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I. Introduction 

This written report briefly summarizes the history from the SHA-1 algorithm to the 
recently declared SHA-3 standard. It begins by defining the symmetric and asymmetric 
cryptography, defines the hash function and the main differences between the types of encryption 
and the details on the broken SHA-1 hash function. The second part describes the  SHA-3 
competition organized by the National Institute of Standards and Technology (NIST) to address 
this attack. The third part will be SHA-3 encryption in details. 

II. Breaking SHA-1 

A. Different types of encryption 

Fig.1 Types of Encryption [s1] 

Encryption is a way to hide a message or information using an input and giving an output 
not readable for those who are not authorized. This is typically divided into three different types. 
Symmetric encryption takes an input using the same key for encryption and decryption. The 
main issue with symmetric encryption is the key exchange. Asymmetric encryption uses two 
keys instead, one for encryption and the other one for decryption, which resolved the key sharing 
issue but is much slower than symmetric encryption. Lastly, encryption by hashing takes an input 
to produce a hash value called a message digest that is of fixed length and unique to each input. 
Hashing is very different from other form of encryption as it takes no key as input.  
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B. Hash Functions 

Fig. 2 Flow Chart example of how a hash works [s2] 

Cryptographic hash functions are designed to take a string of any length as input and 
produce a fixed-length hash value. They are used to uniquely identify secret information which 
means that it should be very hard to find two inputs that will generate the same hash value. 

The main function of the hash function is to preserve the integrity of the content by 
detecting all modifications and thereafter changes to a hash output. Cryptographic hash functions 
are mostly used for the integrity of the content checks. 

Fig. 3 ​A hash function that maps keys to the hashes. Collision between John and Sandra [s3] 

C. SHA-1 

SHA-1 was designed by the United States National Security Agency (NSA) and 
published by National Institute of Standards and Technology (NIST) as a federal standard [1] in 
1995. SHA-1 is the successor of SHA-0 with was quickly deprecated because of flaws identified 
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by NIST. SHA-1 takes input and produces a fixed size output of 160-bits. Each block is 512 bits 
and has 80 rounds. SHA-1 used Merkle-Damgård construction with is used in the design of many 
popular hash algorithms such as MD5, SHA-0, and SHA-2. 

 

 

 

 

 

 

Fig. 4 Merkle-Damgård scheme [s4] 

The Merkle–Damgård construction or hash function is a method of building the 
collision-resistance that a hash function requires from a one-way compression function [s5]. The 
Merkle–Damgård hash function take the original message (input) and divides it into blocks to 
feed the compression function in a different round. The output of the first compression function 
is the input for the second compression function. The second block of the message is used for the 
second compression function and the block size is the remaining bit of the original message. If 
the size is not enough to be considered as a block, the remaining bit of the original message is 
followed by the difference of bits of padding to fill it up. The padding function is used to create 
an input whose size is a multiple of a fixed number (e.g. 512 or 1024) this is because 
compression functions cannot handle inputs of arbitrary size. The hash function then breaks the 
result into blocks of fixed size and processes them one at a time with the compression function, 
each time combining a block of the input with the output of the previous round. In order to make 
the construction secure, Merkle and Damgård proposed that messages be padded with a padding 
that encodes the length of the original message to avoid length extension attack. 

D. SHA-1 Collision attack 

The hash function is by definition a one way function with strong collision resistance.  It 
should be impossible to find two different inputs that create the same hash value. The 
weaknesses found on SHA-1 were theoretical until 2013 [2, 3]. The Centrum Wiskunde & 
Informatica Institute in Amsterdam and Google have successfully developed a practical 
technique for generating an SHA-1 collision named the SHAttered Attack in 2013. This attack 
required Nine quintillions (9,223,372,036,854,775,808) SHA1 computations in total 6,500 years 
of CPU computation to complete the attack first phase and 110 years of GPU computation to 
complete the second phase. This represents the culmination of two years of research that sprung 
from a collaboration between the two teams.​ ​Even though these numbers are very large, the 
SHA-1 shattered attack is still more than 130,000 faster than a brute force attack. 
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The Shattered attack is long term research between the CWI institute and Google’s 
Research security, privacy and anti-abuse group [2]. Marc Stevens and Elie Bursztein started 
collaborating on making Marc’s cryptanalytic attacks against SHA-1 practical using Google 
infrastructure. Ange Albertini developed the PDF attack, Pierre Karpman worked on the 
cryptanalysis and the GPU implementation, Yarik Markov took care of the distributed GPU 
code, Alex Petit Bianco implemented the collision detector to protect Google users and Clement 
Baisse oversaw the reliability of the computations. 

The cryptanalysis team was able to create two different pdf files that share the same 
SHA-1 hash value. The theoretical attack becomes real. Therefore, systems that validate the 
authenticity of data would be deceived into accepting a malicious file in place of the genuine file. 
An example given by the researchers is of a malicious landlord crafting two colliding PDF files 
containing two identical rental agreements, except one has a vastly higher rent [2]. This attack 
could be used to obtain a valid signature for the contract with a high rent by having a victim sign 
the contract stating a lower rent. The SHA-1 collision attack requires significant computational 
resources, but it is still 130,000 times faster than a brute-force effort. SHAttered Attack is based 
on an identical-prefix collision attack. However, this attack technique doesn't allow an attacker to 
generate a collision with an existing file. For example, it's not possible to use this method to 
generate a malicious executable file which matches the signature of an existing legitimate 
executable. Thus, it would be possible for an attacker to generate two executable files which 
have the same SHA-1 hash but perform different actions when they run. Once Google releases 
the code behind the attack, anyone will be able to create pairs of PDF files that hash to the same 
SHA-1 sum, with two distinct images and certain preconditions. 

  

 

 

 

 

 

 

Fig. 5 Collision attack. These two files gives the same SHA-1 hashes [2] 

This research certainly proves SHA-1 is broken.  According to Google, computing the 
SHA-1 collision was one of the largest computations ever completed. 

i. How does the shattered attack work? 

The main idea behind this attack is based on differential cryptanalysis [2, s6]. Having the 
two inputs t0 and t​’​0, ​ Δ​0 will be the difference. After process the two inputs through the 
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function f (the compression function in the case of SHA-1) you get a difference ​Δ​1. The goal 
here is to find a difference in the input ​Δ​0 such that after some iterations you get ​Δ​2 = 0, in other 
words, no difference. The Merkle​–​Damg​å​rd construction of SHA-1 property permit to alter the 
differences between the iterations in order to improve the differences to match his needs. In the 
case of the SHAttered Attack, they chose an initial prefix (P), then later on the next blocks they 
introduce a difference (M1(1), M1(2)) and remove it (M2(1) and M2(2)). At this point, they 
already have their collision. They just need to continue with the same following blocks , leading 
to a collision on the whole input. 

Fig. 6 ​The SHAttered Attack [s6] 

ii. Practical test using shasum  

The shasum script provides the easiest and most convenient way to compute SHA 
message digests. It is very simple to use. The user simply feeds data to the script via the 
command line. The output or SHA value is in hexadecimal notation.  The data can be fed to 
shasum through files, standard input, or both. In our tests, we will feed the script with a file 
created by the team and another test using the pdf files released by the team who discovered the 
Shattered attack (Fig. 7).  

 

Fig. 7 Computing the hash of both PDFs via terminal  
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III. The NIST Competition 

 As established in the previous section, SHA-1 has been officially broken by use of the 
SHAttered attack. Despite this news, SHA-1 remained a very strong algorithm for almost three 
decades.  However, back in 2005, confidence in SHA-1 began to be questioned, and this would 
eventually prompt NIST to start a competition in order to find the new SHA-3. 

There was great fear amongst the cryptographic community that an attack on SHA-1 was 
imminent [4].  Three Chinese researchers named Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo 
Yu discovered a way to reduce the amount of computations needed in order to find a SHA-1 
collision.  Using brute force, finding a collision in SHA-1 requires performing at least 2^80 
computations, which was secure enough for practical purposes [4].  These three Chinese 
Researchers managed to reduce this number to 2^69, which is about 2,000 times faster than brute 
force [2, 4, 5]. While they did not actually perform the collision, there were concerns that it was 
only a matter of time before technology reached a level where performing 2^69 computations 
was feasible within a reasonable time period.  

 Before going further, the reason for NIST to have a competition in the first place needs to 
be established.  What benefits do these events provide to the cryptographic community?  This 
reason this is done is because it fulfills Kerckoff’s Principle.  To put it simply, Kerckoff’s 
Principle says that a cryptographic system is only secure if everything about the system is 
known, except the key.  NIST takes this principle to heart by organizing these competitions, 
since that allows opportunities for algorithms to get rigorously analyzed.  A system that has 
analyzed by many sources inspires more confidence than a system that is kept secret, or has 
received no analysis.  To find a new SHA-3, NIST takes the spirit of Kerckoff’s Principle and 
used it to find a new, truly secure SHA-3. 

 

Fig 8. NIST Competition Timeline 
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A. The SHA-3 NIST Competition: First Round 

 Of the 64 submissions, 51 of these made it to the first round. In this part of the 
competition, NIST was looking for candidates that met the minimum requirements for being 
“complete and proper submissions” [6]. 

Candidates had to submit optimized C code implementations, as well at written specifications 
and intellectual property statements [6].  In addition to these requirements, candidates also 
needed to submit “known-answer tests” in order to prove that the algorithm in question actually 
worked [6].  Essentially, they are used to prove the correctness of an algorithm [7].  This is 
especially important for hash-functions because the output is intended to appear completely 
random and indecipherable.  Candidates would use an output that they know to be correct, and 
then submit these known-answer tests to prove that the algorithm functions as needed. 
Candidates had to provide three different types of known-answer tests, which were for short 
messages, long messages, and extremely long messages [7]. The final requirement, which is one 
of the most important ones, was to require these algorithms to output message digest sizes of 
224, 256, 384, and 512 bits [6]. If a candidate could provide even larger sizes, then that would be 
even better. 

B. The SHA-3 NIST Competition: Second Round 

 Of the 51 candidates, only 14 were selected to proceed to the second round.  The simple 
requirements of the first round no longer applied, as a more rigorous criteria was used to evaluate 
the candidates. 

 Two of the criteria, which are rather straightforward concepts, included “Cost and 
Performance”, and “Algorithm and Implementation Characteristics” [6].  The new SHA-3 would 
be intended to be used in a wide variety of applications, including mobile devices, smart cards, 
and RFID [6]. This means that the candidates needed to be cost-worthy and perform well in any 
given situation, particularly in small devices. If the algorithm required a high degree of 
computational power, then it would not be useful or practical to implement anywhere, no matter 
how secure it actually was. The algorithm itself also needed to be flexible, and the designs 
needed to be simple and elegant [6].  NIST favored this simplicity because that meant the 
algorithm would be easy to analyze, and thus easier to prove whether it holds up to scrutiny. 

 The third criteria, which NIST listed as the most important, was simply called “Security” 
[6].  NIST knew that this term was rather vague as it employs a lot of subjective criteria, so they 
attempted to further define what it was they were looking for with regards to the competition [6]. 
Initially, they said that they were looking for an algorithm that comes closest to resembling an 
oracle in the Random Oracle Model.  The model essentially says that any input that enters a box 
(with an Oracle inside) will produce an output that is truly random.  This approach was highly 
criticized by the cryptographic community, so NIST held a separate workshop that detailed what 
was expected with regards to Security. 

 In this conference, the presentation covers how NIST will analyze an algorithm’s 
susceptibility to general attacks [8].  This includes the computational complexity of these attacks, 
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as attacks that are too complex to be performed can be ignored.  This also includes how these 
attacks affect the algorithm in general.  Whether an attack merely wounds or completely breaks 
an algorithm are different points to consider, for example [8]. Is it possible to launch the attack 
on weaker variants of the given algorithm, and to what extent does it undermine NIST’s 
confidence?  All these points were considered when evaluating a candidate under the “Security” 
criteria.  Lastly, resistance against multi-collision attacks, preimage, and 2​nd​ preimage attacks 
were viewed favorably [8]. 

C. The SHA-3 NIST Competition: Third Round       

 Of the 14 candidates, only 5 of these would proceed to the third and final round. The 
candidates were evaluated based on the same three criteria as in the second round, however they 
were applied in an even more stringent way.  For example, ECHO was not selected because of its 
poor performance, despite decent security [9]. It is also worth noting that none of these 14 
candidates were broken, although partial attacks on weaker variants were possible [9]. William 
Burr, the Manager of the Cryptographic Technology Group, had this to say in an email sent to 
the NIST competition mailing list, sheds some light on how they selected the finalists: 

NIST wanted highly secure algorithms that also performed well. We preferred to be 
conservative about security, and in some cases did not select algorithms with exceptional 
performance, largely because something about them made us “nervous,” even though we 
knew of no clear attack against the full algorithm [10]. 
 
Due to the strength of all these algorithms, a fourth unofficial criteria started becoming 

more relevant in order to narrow down the finalists.  The amount of cryptanalysis a candidate 
received started to matter more, since the more analysis that was done on an algorithm, the more 
it inspired NIST’s confidence. For example, one of the main reasons NIST cut Fugue and Luffa 
from the list is because it only received a small amount of cryptanalysis [9].  After much 
deliberations, five algorithms were selected as finalists.  

D. The SHA-3 NIST Competition: Finalists and Winner 

 The five finalists of the SHA-3 NIST competition were:  BLAKE, Keccak, JH, Skein, 
and Grostl. Each algorithm had its own clear benefits that set themselves apart from the rest. 
BLAKE was chosen because of its high security margin, good performance, and simple/clear 
design [11]. Keccak also had a high security margin and simple design, in addition to high 
throughput and throughput-to-area ratio [11].  JH was credited with an innovative design, solid 
security margin, and good performance [11]. Skein’s main strength was its speed, and also its 
high security margin.  Finally, Grostl was chosen because of the vast amount of cryptanalysis 
received, and its similarity to AES. 

 Keccak was selected as the winner, and is currently the new SHA-3.  Keccak won in 
large part due to its sponge function and authenticated encryption, which will be detailed in the 
next section.     
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IV. A Gentle Introduction to Keccak and the SHA-3 Standard 

This section is designed to outline a top-down view of the Keccak algorithm, noting 
specifically the version of Keccak implemented in the SHA-3 standard. It assumes some 
familiarity with cryptography and binary and  modular arithmetic, however, it does not presume 
any background in programming. For a pseudo-code implementation see [12,13]. For a full 
implementation see supplemental links [s7,s8]. 

A. Modes of Operation 

Keccak is a family of algorithms based on what is called the “sponge construction” or 
“sponge function.” [12, 13] The “sponge” in sponge construction is so named because it is an 
algorithm which, in theory, can “absorb” an arbitrary amount of data to “squeeze out” and 
arbitrary amount of output. The speed at which data is absorbed is defined by ​r,​ the rate, which is 
absorbed into an array of width ​b​ (for ​bus​width) and follows the formula where is the bit-length 
of a register in a CPU (​l​=6 for a 64-bit CPU). Finally, the security bits of the algorithm is defined 
by the capacity ​c​ so that 

SHA-3 is a family of four hash functions and two extendable output functions (see Table 
1 for details). [12] It fixes the Keccak algorithm to a buswidth of 1600, so that the capacity and 
the rate always add to 1600, and designates 4 output lengths for the hash functions: 224, 256, 
384, 512 based on the security levels of 3DES and AES respectively [14]. XOFs are abstractions 
of hash functions that effectively allow a user to create a hash value of any length. Example 
hashes of the word “Hello” are printed in Table 2 

Table 1. The SHA-3 Standard with parameters [13] 

 

 

 

https://hashgen.de/
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Table 2. SHA-3 Hashes made with​ ​https://hashgen.de/ 

B. The Sponge Function 

Keccak is based on the sponge construction which is pictured in Fig. 9. The function is 
divided into an absorbing and squeezing phase. In the absorbing phase, the state is initialized to 
b​-bits of zeros. Then, this state is XORed with the first ​r​-bits of the padded message and fed into 
the f-function, which serves a similar role as the f-function in AES and DES (see section C for 
more details). The process of taking the XOR of the first ​r​-bits of the message with the first 
r​-bits of the state is done iteratively until all the data has been absorbed. Note that the last ​c​-bits 
of the state do not directly rely on the message, only the results of the f-function. This is a critical 
part of Keccak’s security. 

Once the data has been absorbed, it moves onto the squeezing phase. In the simplest case 
of a hash function, this phase involves simply truncating the first r-bits of the state to the desired 
value. If an output greater than ​r​ is requested (such as in the case of XOFs), the state is fed into 
the f-function again and the first ​r​-bits are added to the output iteratively until the desired length 
is reached. 

Fig. 9 The Sponge Construction [12] 

 

To ensure data of length ​M​ can be absorbed into even chunks of ​r​-bits, padding rules are 
applied. Table 3 shows the types of padding applied where ​q​ is the difference of ​r ​and ​M. ​For 
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any padding over 2 bytes, a number of zero bytes is added to the middle until the length of the 
padded message is: 

 

Table 3. Example padding for a message ​M​ [12] 

C. The f-function 

Keccak-f provides the core of Keccak’s cryptographic capability. It is designed to run for 
24 rounds (based on the formula ) and divided into 5 steps. All functions operate on the bits of 
the state organized into a 5x5x array (pictured in the Fig. 10). 

Fig. 10 Organization of the state-array and terminology [12] 
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The first, and perhaps most complicated is the, ​theta​ step. It involves taking the XOR 
sum of 11 bits in the pattern illustrated in Fig. 11. For a given bit ​x​ in the state array, ​x​ is 
assigned the result of x XOR the bits in column ​x​-1 XOR the bits in column x+1, y+1 in modulus 
5. 

 

Fig. 11 Theta illustrated [14] 

The second step is called ​rho​ which works together with the third step ​pi​. For every lane 
in the state array (​x​,​y​), ​rho​ bit rotates the lane to the left (e.g. “1011” becomes “0111”) by a fixed 
constant (​x​,​y​) specified in Table 4. Then, each lane (​x​,​y​) is swapped with the lane at position 
(​2x​+​3y mod 5​, ​x​). 

 

Table 4. Row offsets [1] 

The fourth step is ​chi​ (pronounced “kai”) which applies a logical function on each lane 
according to the following formula: 
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where A[x,y] is a given lane in the state from the ​theta​ function and B[x,y] is a lane in the state 
after the ​pi​ function, and B-bar denoted the inverse of the lane [14]. 

The last step is ​iota​ which simply XORs a constant with the lane at (0,0) according to the 
round and Table 5. 

 

Table 5. Round constants [13] 

D. The Future of Keccak: Keyak 

One reason Keccak ousted it’s competition, as cited by NIST, was it’s flexibility as an 
algorithm, specifically, as a building block for an authenticated encryption algorithm [11]. 
Authenticated encryption is a process which preserves integrity and availability in addition to 
confidentiality compared to traditional encryption. In addition to a plaintext and key, 
authenticated encyrption provides a means of validating a message with hashing via a “message 
authentication code” (MAC). Though there are various approaches to achieving this, the schema 
proven to be secure [15] is the Encrypt-then-Authenticate model (Fig. 12) 
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Fig. 12 Encrypt-then-Authenticate: Use key to encrypt, use key and cipher text to generate a 
MAC [15] 

Traditionally, implementing a scheme such as the above requires two separate 
algorithms: one for encryption, one for hashing. However, due to the unique qualities of Keccak, 
specifically its ability to output an arbitrary length of bits, it can serve both functions. This 
involves manipulating the sponge function into what is called a Full-State Keyed Duplex Sponge 
construction (FKDS) [15]. 

A good starting point would be to ask, where does the key go in a function that only has 
one input? Recall from Section B that the sponge construction state starts with all bits set to zero. 
But this purely arbitrary. If we want to add a key to the mix, we just need to substitute the key in 
the initial state. Note that if the key is less than ​c​-bits, it can be placed in the part of state which 
is the least related to the plain text input. Recall also that with Keccak we can request as much 
output as we need to generate a cipher text. 

 



 PAGE 15 of  18 

Fig. 13 Full-State Keyed Sponge Construction [15] 

 

A Duplex Sponge Construction is an implementation of Keccak sponge that allows one to 
switch input and output blocks for each pass of the f-function. This is equivalent to how a 
block-cipher like AES or DES encrypt one block at a time. 

 

Fig. 14 Duplex sponge construction [5] 

We finally arrive at a Full-State Keyed Duplex Sponge construction (FKDS) by 
combining the structures together. The result produces a block cipher with very similar security 
to the Keccak hash algorithm. 

 

Fig. 15 Full-State Keyed Duplex Sponge construction (FKDS) [14] 

Keyak managed to survive until the third-round of Caesar competition, but ultimately has 
not made it to the list of finalists announced earlier this year. Time will tell if Keyak will still 
find use in other areas of cryptography even if it is not to become a government standard. It is 

 



 PAGE 16 of  18 

clear, however, that the sponge construction has and will continue to leave its mark on the 
cryptography community as a smart, flexible, and robust method of building encryption schemes. 
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