aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--10001prime.py.orig30
-rw-r--r--bigfactors2.py.orig32
-rwxr-xr-xcollatzbin16688 -> 16696 bytes
-rw-r--r--collatz.c18
-rw-r--r--collatz.py.orig24
-rwxr-xr-xfibbin0 -> 16776 bytes
-rw-r--r--fib.c33
-rw-r--r--fib.py.orig33
-rwxr-xr-xlargestprimebin0 -> 16648 bytes
-rw-r--r--largestprime.c21
-rw-r--r--largestprime.py43
-rw-r--r--largestprime.py.orig55
-rw-r--r--palindrome.py.orig40
-rw-r--r--productofdigits.py.orig18
-rw-r--r--smallmult.py.orig26
-rw-r--r--sumexp.py.orig10
-rw-r--r--sumofprimes.py.orig44
-rw-r--r--sumsq.py.orig27
18 files changed, 60 insertions, 394 deletions
diff --git a/10001prime.py.orig b/10001prime.py.orig
deleted file mode 100644
index ecaa8cd..0000000
--- a/10001prime.py.orig
+++ /dev/null
@@ -1,30 +0,0 @@
-import PIL, math
-
-#Problem 7 - 10,001st prime
-
-#returns a list of every prime up to a certain number
-def listprimes(number):
- primes = []
- if (number <=1):
- return [1]
- a = [1] * number
- a[0]=0
- a[1]=0#1 and 0 are not prime
- ##Sieve of eratosthenes
- for i in range(2,int(math.ceil(math.sqrt(number)))):
- if(a[i]==1):
- j = i**2 #cross out all the multiples of i, starting with its square
- while(j < number):
- a[j] = 0
- j+=i
-
- for k in range(2, number):
- #is prime
- if(a[k]==1):
- primes.append(k)
- return primes
-
-out_list = listprimes(1000000)
-#print(out_list)
-#return 10,001th prime factor
-print(out_list[10000])
diff --git a/bigfactors2.py.orig b/bigfactors2.py.orig
deleted file mode 100644
index 41bc13d..0000000
--- a/bigfactors2.py.orig
+++ /dev/null
@@ -1,32 +0,0 @@
-import PIL, math
-
-#Problem 12 Highly divisible triangular number
-#finds the first number with over 500 factors
-
-def countfactors(num):
- factors = 0
- ### we only need to know about the FIRST HALF of factors,
- ##one factor implies a second
- root = int(math.ceil(math.sqrt(num)))
- divs = range(1, root)
- for d in divs:
- if(num%d == 0):
- factors += 2
-
- #Correction if the number is a perfect square
- if (root * root == num):
- factors-=1
- return factors
-
-
-#### MAIN #####
-i=1
-k=1
-j = 0
-while(k < 500):
- j += i
- k=countfactors(j)
- print(str(j) + " has " + str(k) + " factors")
- i += 1
-
-print("Ding! Ding! {} has over 500 factors, wow!".format(j))
diff --git a/collatz b/collatz
index 75c5d45..37da709 100755
--- a/collatz
+++ b/collatz
Binary files differ
diff --git a/collatz.c b/collatz.c
index 5bbb783..ec77af6 100644
--- a/collatz.c
+++ b/collatz.c
@@ -1,19 +1,13 @@
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
-#include <string.h>
+// In C, it's immediately obvious my python solution is inefficient
-// Temporary storage chain
-//long int *chain;
-// The longest sequence found so far
-//long int *seq;
-
-// Size of the above arrays
+// For keeping track of the length of sequences
+// c is a temporary counter, s changes when c reaches a new maximum
long int c = 0;
long int s = 0;
long int collatz(long int seed){
- //chain = (long int *) realloc (chain, c * sizeof(long int));
- //chain[c - 1] == seed;
c++;
if(seed == 1)
return 0;
@@ -21,19 +15,17 @@ long int collatz(long int seed){
seed = seed / 2;
else
seed = 3 * seed + 1;
- //collatz(seed);
+ collatz(seed);
}
int main(){
for(long int i = 1; i < pow(10, 6); i++){
c = 0;
- //chain = (long int *) malloc(c * sizeof(long int));
collatz(i);
- printf("%d \n", i);
if(c > s){
s = c;
}
}
- printf("Has %d numbers \n", s);
+ printf("The longest sequence has %d numbers \n", s);
return 0;
}
diff --git a/collatz.py.orig b/collatz.py.orig
deleted file mode 100644
index 404a2ed..0000000
--- a/collatz.py.orig
+++ /dev/null
@@ -1,24 +0,0 @@
-import PIL, math
-
-#Problem 14 Longest Collatz sequence
-#Note, a little slow, takes about 15 seconds.
-#There is probably a more efficient solution out there
-chain = []
-biggo = []
-
-def collatz(seed):
- chain.append(seed)
- if(seed == 1): return 0
- if(seed%2 == 0):
- seed = seed/2
- else:
- seed = 3*seed +1
- collatz(seed)
-
-for n in range(1,pow(10,6)):
- collatz(n)
- if(len(chain)>len(biggo)):
- biggo = chain
- chain = []
-print(biggo)
-print("Has " + str(len(biggo)) +" numbers.")
diff --git a/fib b/fib
new file mode 100755
index 0000000..e9b1b3b
--- /dev/null
+++ b/fib
Binary files differ
diff --git a/fib.c b/fib.c
new file mode 100644
index 0000000..915fccd
--- /dev/null
+++ b/fib.c
@@ -0,0 +1,33 @@
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+
+const long int MAX = 4 * pow(10, 6);
+int *fib;
+
+int main(){
+ // Intialize sequence with first two terms
+ fib = (int *) malloc (2 * sizeof(int));
+ fib[0] = 1;
+ fib[1] = 1;
+
+ // loop counter
+ int k = 1;
+ // sum of even terms
+ int sum = 0;
+ //next term in sequence
+ int next;
+ while(1){
+ next = fib[k] + fib[k - 1];
+ printf("%d\n", next);
+ if(next > MAX)
+ break;
+ if(next % 2 == 0)
+ sum += next;
+ k++;
+ fib = (int *) realloc (fib, (k + 1) * sizeof(int));
+ fib[k] = next;
+ }
+ printf("The sum of the even terms is %d\n", sum);
+ return 0;
+}
diff --git a/fib.py.orig b/fib.py.orig
deleted file mode 100644
index 77b32fa..0000000
--- a/fib.py.orig
+++ /dev/null
@@ -1,33 +0,0 @@
-import PIL, math
-MAX = 4*10**6
-
-#Problem 2 Even Fibonnacci numbers
-fib = [1, 1]
-
-k=1;
-while (True):
- n = fib[k] + fib[k-1]
- if(n>MAX):
- break
- else:
- fib.append(n);
- k+=1
-
-c=0
-for i in fib:
- num = str(i)
- print(num + " ", end='')
- c+=1
- if(c%10==0):
- print()
-
-print()
-
-print("The sum is: " + str(sum(fib)))
-
-s=0
-for i in fib:
- if (i%2==0):
- s+=i
-
-print("The sum of the even terms is: " + str(s))
diff --git a/largestprime b/largestprime
new file mode 100755
index 0000000..c2afe6f
--- /dev/null
+++ b/largestprime
Binary files differ
diff --git a/largestprime.c b/largestprime.c
new file mode 100644
index 0000000..bf98414
--- /dev/null
+++ b/largestprime.c
@@ -0,0 +1,21 @@
+#include <stdio.h>
+#include <stdlib.h>
+
+long lpf(long num){
+ long factor = 2;
+ while(num > factor){
+ if(num % factor == 0){
+ num = num / factor;
+ factor = 2;
+ }
+ else{
+ factor ++;
+ }
+ }
+ return factor;
+}
+
+int main(){
+ printf("%d\n", lpf(600851475143));
+ return 0;
+}
diff --git a/largestprime.py b/largestprime.py
index fa53dc5..387de01 100644
--- a/largestprime.py
+++ b/largestprime.py
@@ -1,47 +1,6 @@
import PIL
import math
-import numpy as np
# Problem 3 Largest Prime Factor
-
-###INEFFICIENT METHODS###
-# def isPrime(number):
-# if (number <=1):
-# return False
-# for i in range(2,number):
-# if(number%i==0):
-# return False
-# return True
-
-# def prime_factors(number):
-#primes = []
-# for i in range(number, 2, -1):
-# if(number%i==0):
-# if (isPrime(i)):
-# return i
-# return primes
-
-
-def prime_factors(number):
- primes = []
- if (number <= 1):
- return [1]
- a = np.ones(number)
- a[0] = 0
- a[1] = 0 # not prime
- for i in range(2, int(math.ceil(math.sqrt(number)))):
- if(a[i] == 1):
- j = i**2 # cross out all the multiples
- while(j < number):
- a[j] = False
- j += i
-
- for k in range(2, number):
- # is prime is a factor
- if(a[k] == 1) and (number % k == 0):
- primes.append(k)
- return primes
-
-
def lpf(number):
factor = 2
while (number > factor):
@@ -54,4 +13,4 @@ def lpf(number):
out = lpf(600851475143)
-print out
+print(out)
diff --git a/largestprime.py.orig b/largestprime.py.orig
deleted file mode 100644
index fa39904..0000000
--- a/largestprime.py.orig
+++ /dev/null
@@ -1,55 +0,0 @@
-import PIL, math
-import numpy as np
-#Problem 3 Largest Prime Factor
-
-###INEFFICIENT METHODS###
-#def isPrime(number):
-# if (number <=1):
-# return False
-# for i in range(2,number):
-# if(number%i==0):
-# return False
-# return True
-
-#def prime_factors(number):
- #primes = []
- #for i in range(number, 2, -1):
- #if(number%i==0):
- #if (isPrime(i)):
- #return i
- #return primes
-
-
-
-def prime_factors(number):
- primes = []
- if (number <=1):
- return [1]
- a = np.ones(number)
- a[0]=0
- a[1]=0#not prime
- for i in range(2,int(math.ceil(math.sqrt(number)))):
- if(a[i]==1):
- j = i**2 #cross out all the multiples
- while(j < number):
- a[j] = False
- j+=i
-
- for k in range(2, number):
- #is prime is a factor
- if(a[k]==1) and (number%k==0):
- primes.append(k)
- return primes
-
-def lpf(number):
- factor = 2
- while (number > factor):
- if(number % factor == 0):
- number = number/factor
- factor = 2
- else:
- factor +=1
- return factor
-
-out = lpf(600851475143)
-print out
diff --git a/palindrome.py.orig b/palindrome.py.orig
deleted file mode 100644
index 9690553..0000000
--- a/palindrome.py.orig
+++ /dev/null
@@ -1,40 +0,0 @@
-import PIL, math
-
-#Problem 4 - Palindrome Products
-
-def isPalindrome(number):
- numchar = str(number)
- middle = len(numchar)/2
- face = numchar[:middle]
- ref = numchar[len(numchar):middle-1:-1]
- if(face == ref):
- return True
- else:
- return False
-
-def findProduct(number):
- for i in range(999,100,-1):
- for j in range(999,100,-1):
- if(i*j==number):
- return [i,j]
-
-def findMaxPalindrome():
- large = 0
- for i in range(999,100,-1):
- for j in range(999,100,-1):
- test = i*j
- if(isPalindrome(test) and test > large):
- large = test
- return large
-
-answer = findMaxPalindrome()
-print(answer)
-print("The factors are: " + str(findProduct(answer)))
-#x = input("Type a palindromic number: ")
-
-#if(isPalindrome(x)):
- #print "The factors are: " + str(findProduct(x))
-#else:
- #print "not a palindrome"
-
-
diff --git a/productofdigits.py.orig b/productofdigits.py.orig
deleted file mode 100644
index ddd5edc..0000000
--- a/productofdigits.py.orig
+++ /dev/null
@@ -1,18 +0,0 @@
-import PIL, math
-import numpy as np
-
-#Problem 8 - largest Product in a series
-bigBoy=7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450
-
-def parseNum(x, r):
- search = str(x)
- maxi = 0
- for ch in range(0,len(search)-r):
- prod = int(search[ch])
- for dig in range(ch+1, ch+r):
- prod*=int(search[dig])
- if (prod > maxi):
- maxi = prod
- return maxi
-
-print(parseNum(bigBoy, 13))
diff --git a/smallmult.py.orig b/smallmult.py.orig
deleted file mode 100644
index d672ef0..0000000
--- a/smallmult.py.orig
+++ /dev/null
@@ -1,26 +0,0 @@
-#Problem 5 smallest multiple
-#2520 is the smallest number that can be divided by
-#each of the numbers from 1 to 10 without any remainder.
-#What is the smallest positive number that is evenly divisible
-#by all of the numbers from 1 to 20?
-
-import PIL, math
-
-def isDivisible(num, divisors):
- divisible = True
- for j in divisors:
- if(num%j !=0):
- divisible = False
- break
- return divisible
-
-divs = range(1,21)
-
-found = False
-start = 2520
-while (not found):
- start+=20
- found = isDivisible(start,divs)
-
-print(start)
-print(str(isDivisible(start, divs)))
diff --git a/sumexp.py.orig b/sumexp.py.orig
deleted file mode 100644
index 90dd2da..0000000
--- a/sumexp.py.orig
+++ /dev/null
@@ -1,10 +0,0 @@
-import PIL, math
-#Problem 16 Power digit sum
-n = 2**1000
-strn = str(n)
-s = 0
-
-for i in strn:
- s += int(i)
-
-print(s)
diff --git a/sumofprimes.py.orig b/sumofprimes.py.orig
deleted file mode 100644
index 3799e94..0000000
--- a/sumofprimes.py.orig
+++ /dev/null
@@ -1,44 +0,0 @@
-import PIL, math
-
-#Problem 10 sum of primes
-###INEFFICIENT###
-#def isPrime(number):
-# if (number <=1):
-# return False
-# for i in range(2,number):
-# if(number%i==0):
-# return False
-# return True
-
-#def prime_factors(number):
- #primes = []
- #for i in range(number, 2, -1):
- #if(number%i==0):
- #if (isPrime(i)):
- #return i
- #return primes
-
-
-
-def prime_factors(number):
- primes = []
- if (number <=1):
- return [1]
- a = [1] * number
- a[0]=0
- a[1]=0#not prime
- for i in range(2,int(math.ceil(math.sqrt(number)))):
- if(a[i]==1):
- j = i**2 #cross out all the multiples
- while(j < number):
- a[j] = False
- j+=i
-
- for k in range(2, number):
- #is prime
- if(a[k]==1):
- primes.append(k)
- return primes
-
-out = prime_factors(2000000)
-print(str(sum(out)))
diff --git a/sumsq.py.orig b/sumsq.py.orig
deleted file mode 100644
index e5e8988..0000000
--- a/sumsq.py.orig
+++ /dev/null
@@ -1,27 +0,0 @@
-#The sum of the squares of the first ten natural numbers is,
-#12 + 22 + ... + 102 = 385
-#The square of the sum of the first ten natural numbers is,
-#(1 + 2 + ... + 10)2 = 552 = 3025
-#Hence the difference between the sum of the squares
-#of the first ten natural numbers and the square of the sum is
-#Find the difference between the sum of the squares of the first
-#one hundred natural numbers and the square of the sum.
-
-import PIL, math
-
-nums = range(1,11)
-numsq = range(1,11)
-
-for i in nums:
- i = i*i
-
-print(nums)
-print(numsq)
-
-sum1 = (sum(nums)**2)
-sum2 = (sum(numsq))
-
-print("The sum squared is: " + str(sum1))
-print("The sum of the squares is: " + str(sum2))
-
-print("The difference is: " + str(abs(sum2-sum1)))